
Toward Safe Reuse of Product Family Specifications

Rohyn R. Lutz*
Jet Propulsion Laboratory

California' Inst'itute of Technology
Pasadena, CA 91109-8099

August 27, 1998

Abstract

Upcoming spacecraft plan extensive reuse of software components, t,o t,he extent
that some systems will form product families of similar or identical units (e.g., a fleet
of spa.ceborne telescopes). Missions such as these must be demonstrably safe, but the
consequences of broad reuse are hard to evalua,te from a software safety perspective.
This paper reports experience specifying an interferometer (telescope) subsystem as a
product family and supplementing the specification with results from a hazards anal-
ysis. Lessons learned are discussed in three areas: (1) integration of hazards aaalysis
with the product family approach; (2) modeling decisions tha,t have safety implica-
t,ions (e.g., how to handle neaa-commonalities, esta,blishing a hierarchy of variabilities,
and specifying dependencies among options); and (3) tracing the product family re-
quirements to the design of the reusable components and to the design of a specific
product. The product family approach was effective at identifying. some latent safety
requirements and in validating the design of the reusable software. The product family
approach lacked an adequate way to distinguish a,rchitectural variations from run-time
variations in the model.

1. Introduction
Upcoming spacecraft plan extensive reuse of software components, too the ext'ent that some
systems will form product families of similar or identical unit,s (e.g., a fleet of spacehorne
telescopes). hhsions such as these must be demonstra,bly safe, but the consequences of
broa,d reuse are hard t,o evaluat,e from a, software safety perspective [l, 6, 13, 16, 191. This
paper reports experience specifying an interferometer (telescope) subsystem as a product
family, performing a hazards analysis to enhance its software requirements, and using the
requirments to evaluate the design of a reusable component.

Fig. 1 shows an overview of an interferometer. An interferometer is an instrument,
(roughly, a collection of telescopes) that, makes ca,reful mea,surenlents of the locations of stars.

*First# a.uthor's a.ddress is Dept. of Computer Science, Iowa Stmate University, Ames, IA 50011-1041.

1

Starlight Starlight

Beam
Combiner

Figure 1: Interferometer System Overview

The interferometer uses a number of special mirrors to collect light from these stars. The
collcct,ed light is combined and ma,de to “interfere.” By calculating the interference, highly
accurate position measurements can be made. The output of a set of small, geographically
distributed collecting instruments is t,hus used to synthesize the performance of a single
larger instrument [la, 181

Spxeborne optical interferometers have been identified as a critical technology for many
of NASA’s 21st century missions to explore the origins of stars and galaxies and study other
Earth-like planets [14]. Among the spaceborne interferometers under development or pro-
posed for future development are t,he Spa.ceborne Interferometry Mission, t’he New Millenium
Separat,ed Spacecra.ft, Interferometer, and the Terrestrial Planet Finder. Anticipaked launch
dates range from 2001 to 2020 or beyond. Ground-based interferometer projects, including
the Keck Interferometry Project, are also underway [18].

One of the technological challenges involved in interferometers is the very high precision
needed to achieve the required resolution. Light arrives at one of the interferometer’s mirrors
sooner than at the other. Prior to arrival at the beam combiner, optical path delay is added
to the light by means of a delay line component. The delay line compensa.tes for the difference
in time between when starlight a.rrives at the mirrors [8, 9, 10, 11, la].

Anot,her component, of the interferometer, the fringe tracker, provides constant feedback
to the delay line software regarding resolution to guide this adjustment. Due to their criti-
cality, these two components, the Delay Line software and the Fringe Tracker software, were
chosen as initial pieces for definition of the interferometer product family.

2

Projects’ requirements
\

Develop Product
Family Specification

Requirements for
common reusable software

<z> Perform Preliminary \pping

Evaluate Design
of Projects’

Figure 2: Three Phases of the Product Family Application

Fig. 2 shows the three phaaes of the product family approach as applied to the interfer-
ometer software. The contributions made to this app1ica)tion by the product fa,mily a.pproach
were (1) t80 provide a structured specification of both t,he commonality and variability re-
quirements, (2) to aaalyze the product, family requirement,s from a sa.fety perspect,ive and
improve them a.ccordingly, and (3) to evaluate the design of reusable software component,s
by checking whether they satisfied the product family requirements. Section 2 of the paper
describes the first step, the specification of the product family. Section 3 discusses the second
st,ep, the hazard analysis of the product family. Section 4 describes the result,s of the third
step, design evaluation.

Lessons leaned are discussed in three areas:

1.

2.

3 .

integrat,ion of hazards analysis with the product family approa,ch;

modeling decisions that have safety implications (e.g., how to handle near-commonalities,
establishing a hierarchy of variabilities, and specifying dependencies among options):
and

tracing the product fa,mily requirements to the design of t,he reusable components and
t,o t,he design of a. specific product.

The product fa,mily a,pproa.ch proved effective a,t identifying latent safety requirements and
in valida,ting the design of the reusable software. The product fa,mily approach lacked an
adequate way t,o distinguish architectural variations from run-time va,ria,tions in the model.

3

2. Product Family Definition
Organizationally, a group was already in place to facilitate reuse among the interferometer
projects when t,he product family work reported here began. That group was tasked with
ident)ifying and providing reusable, generic softwa,re components to the various interferometer
projects. The group consisted of experienced engineers and programmers, led by people with
extensive backgrounds in developing interferometers.

Their development of the reusable software components was evolutionary. It was strongly
object-oriented, with each iteration providing cleaner interfaces and taking advantage of ad-
dit,ional opportunities for a,bstraction (class inheritance). The documentation they produced
was primarily textual description and UML diagrams, with the design and code sometimes
outstripping the document,a,tion. The available documentation, together with detailed pre-
sent,at,ions during aschit,ectural reviews, formed the basis for the specifica.tion of the product
family requirements.

The documentation from the reusa.ble software components group emphasized t,he com-
mon features of the interferometer software, since this was their deliverable. The product
family approach, since it describes both the common and the distinct features of the various
systems, provided a useful safety check and counterpoint to the generic soft,ware development.

Some of the variations among the interferometers were discussed in the documentation
of the requirements for the reusable softwa,re. Other variations were gathered from exten-
sive web pages describing the int,erferometers, during review of the initial product family
specifications, as will be discussed below, and from comments during the a,rchitectural re-
view. In general, the specific interferometer projects had not started t,o document software
requirements at this early stage but, where such documentation existed, it was consulted for
additional variations.

In developing the product family requirements, the process described in the SPC guide-
book was followed for t,he domain definition a,nd domain specification. [all. SPC recommends
tha,t product family requirements be expressed in such formats a,s structured, informal text;
msertions; or formal or semi-form specifications.

For the domain definition, the domain was first defined informally as the Delay Line and
Fringer Tracker subsystems of interferometers. A standard terminology was then defined in
the form of a, glossary. The glossary included terms such aa “path length” and “baseline
vector” that are used i n the description of the software capabilities. The glossary was
repeatedly corrected and supplemented throughout the application in response to additional
input and updates. One of the lessons learned (discussed in Sect’ion 5.2) was that each project
ha.d a slightly different vocabulary and slightly different definitions for some standard terms.
Precise definit,ions helped uncover subtle variations among the projects’ interferometers.

The largest part of the initia.1 effort was in what SPC calls “Esta.blish domain assump-
tions.” The domain assumptions are divided into commonality assumptions and variability
a,ssumptions. Commonality assumptions are characterisitics shared by all the systjems in
the domain. Variability assumptions are characterisitics not shared by all systems in the
domain.

Examples of commonality assumptions a,re “[Delay Line] receives closed loop target from
Fringe Tra,cker for fine-tuning” and “Automatically stops dehy line [hardware] when end
of t,ra.ck is rea.ched wit,h software limit featcure.” Exa,mples of va,ria,bility assumptions are

4

“The baseline vector knowledge accuracy needed can va,ry” and “The number of delay lines
can vary.” Forty commonality assumptions and twenty variability assumptions were init,ially
identified for the delay line and fringe tracker components. As will be discussed below, these
numbers changed as the specifications were corrected and refined.

The data items needed to describe a. particular system in this product family were iden-
tified from the variabilities. Each variability identified above had to be quantified by one or
more parameters. These pa.rameters of variability define the ra,nge of customer requirements
and decisions that must be made to specify a particular member of the product family (i.e.,
a particular interferometer) [2 l , 221.

Ardis and Weiss propose the inclusion of the following information for each parameter of
variability: Parameter, Binding, Variability, Default, Domain, a.nd Comment,s [2, 31. This
informa.t,ion was specified for the delay line using an automated toolset, SCR* from the Na,val
R.esearch Laboratory, with the parameters of variability being documented as monit,ored
variables [7]. The use of this toolset provided the opportunity for later automated analysis.
SCR* produces table-based specificatlions tha,t, are easy to r e d , update, and distribuk on
the web. The a.utomated malysis tools interface seamlessly with the specifications. An
accurate, reusa,ble requirements model provides a firm base for building members of the
product, fa,mily. As the requirement,s matmure or change, the SCR tables can be updated and
the a.utomatic checks re-run to give some assurance of continued consistency.

The SCR* toolset, allowed precise specification of the parameters, the variabilities t,hat
t,hey map to, and their default value. Twenty-three variables and four new da,t,a types were
defined. The SCR Vxiable Dictionary produced a. tabular description of each variable with
fields for the da.ta type, initial value, accuracy required and comments. The comment field
was used to provide a reference to the variability that produced this parameter of variability,
to indicate the allowa,ble range of values (e.g., the number of delay lines can range from 0
to 8 in current planning), and to indicate the time the value is determined (i.e., bound at
specification time, compile time or run time).

The number of parameters of variability is here (oddly) less than the number of vari-
a.hilit,ies. This is because one variability relating to the targeting of t,he interferometer was
decomposed into additional variabilities and pa.rameters of variability during t,he const)ruc-
tion of the decision model. The higher-level varkbility waa retained in the model for easier
traceability to the requirements documents. However, it contributed no parammeters of vari-
ability of its own, and could have been deleted without affecting the model’s consistency.

A prototype SCR” requirements specification wa.s produced for the delay line component
by Frank Humphrey. The SCR* specification documented the delay line modes and the
events tha,t caused transitions among them. The requirements specification demonstrated
the SCR” capabilities for automatic ana.lysis (e.g., parsing, type-checking, consist,ency checks,
and some completeness checks) and simulation of the requirements.

A decision was made not to maint,ain the specification at that point in t’ime since keeping
the commonalities and variabilities precise and current was the focus of this phase. Rapid
review was more easily achieved by refining the textual domain specification since structured
English was preferred over formal specifications for the review. In addition, uncertainty as
to some projects’ software requirements had resulted in updates to the existing requirements
documentation lagging behind the design aad (in some cases) code. This encouraged deferral
of a, formal product family requirements specification until the components’ requirements ha.d

1.
2.
3 .
4.
5.
6.
7 .
8.
9.
10.
11.
12.
1 3 .
14.

Can’t makch delay
Wrong position
Wrong velocity
Hardware failure
Hardware failure
Acceleration too high
Invalid parameter
Runs off track
Fringe tracker to wrong delay line
Interface failure
Hardware failure mode
Maint,enance failure
Maintenance failure
Hardwa.re failure mode

New
Open
New
Beyond Scope
Beyond Scope
New
New
Handled
Beyond Scope
Beyond Scope
Beyond Scope
Beyond Scope
Beyond Scope
Hmdled

Table 1: Summary of Results of Preliminary Hazard Analysis

been documented.
The Specification Assertion Dictiona.ry feature provided in SCR* was used experimentally

to document some dependencies among the variabilities. For example, an interferometer can
be either a guide or a science interferometer. An interferometer can ha,ve, or not h v e , a,
feedforward ta.rget,. Each of these statements captures a possible variability. A dependency
among these variabilities is that a feedforward target, can only exist if there is a guide
interferometer. Using the Specification Assertion Dictionary, predica,tes such as this could
be documented and checked.

3. Hazards Analysis
“Ha.za.rds armlysis is at, t,he heart of any effective safety program,” according t,o Leveson
[15]. A Preliminary Ha,zards Analysis wa,s performed for the target subsystem. Input to the
process included the existing documentation for the delay line components on the various
interferometers, the delay line’s interactions with the system, presentations, and discussions.
Review of these yielded a list of hazards involving delay lines that might occur during
operations.

The hazards were then analyzed to see if the existing product family requirement,s pro-
vided mitiga,tion of the hazards. In some cases, a,n a,dditional safety requirement could be
derived and added to the product family requirements.

Fourteen haza,rds were identified for the delay line component,. A high-level summary
of the hazards is shown in Table 1. The second column indicates the current status of the
hazard. “Beyond Scope” in this column indicates tha,t mitigation of the hazard is beyond
the scope of the delay line software (;.e., either a hardware responsibility or associa.ted

6

with other software). “Handled” indicat,es that the existing product family requirement,s
prevent or ha.ndle the hazard. “New” in the column shows that an a,dditiona.l software safety
requirement, wa,s derived from the hazard a.nalysis and proposed for inclusion in the product
family requirements. “Open” means tha.t it is still unclear what the requirement should
be (e.g., exactly wha.t, kinds of graceful degmdation are possible while still ret,aining t,he
scientific usefulness of the instrument).

Two hazards were controlled by existing product family requirements. Four additiond
safety requirements were recommended for addition to the product family requirements as a
result of the Preliminary Hazards Analysis. Three of these involved additional reasonableness
checks on the validity of the input, or t,he output. One involved the addition of a, requirement
for a watchdog timer. Incorporat,ing the results of the preliminary hazards analysis into t,he
producd family approach allowed four derived software safety reyuirement,s to be added t’o
the product family requirements.

Some additional software safety requirements can be derived from the PHA but are
outside the scope of the delay line software (e.g., a software check that the commanded
configuration or cross-strapping is permitted). Further analysis (e.g., a fault tree analysis
[IS]) of the hazards can help identify safeguards against these remaining haza,rds.

4. Design Evaluation

The third piece of this work was to evaluate the design of the reusable software components
thak were being developed against the product family requirements. Each of the twenty
commonality requirements for the Delay Line Component was traced to the existing design
documentat,ion for the generic software and to the design documentation for the first, interfer-
omet,er (a testbed version) [8, 91. These design documents were prelimina,ry drafts containing
interfxe, bhckbox (;.e., functional) descriptions of tasks triggered by events, and some stat,e
transition diagrams and sequence diagrams. The results from the design evaluations are
merged here since no interesting differences among the two design evaluations emerged (a
tribute to the reusa.ble software component group’s work).

One result of the design evaluation was that three of the commonalities were not traceable
to the preliminary design. Another three requirements were implied in the design (e.g., evi-
dently embedded in the algorithms) but were not explicitly addressed. These numbers don’t
include the four commonality requirements derived from the preliminary hazards analysis,
since they were too low-level to be traced to this design document.

It should be noted that the presence of product fa,mily requirements not traceable to the
software design does not indicat,e a design error, since the generic reusable software is not
responsible for providing all common services. However, the mismatches between product
family requirements and software design indicate points at which a product family design
would diverge from the reusable software component design. The mismatches may also
indicate areas in which future customer expectations of genericity will not be served by the
ava.ilable software.

On t,he other hand, several features present in the design were not included in t,he product
family requirements, but should have been. For example, one interface, the error stream tha.t,
outputs data to ot,her components of t8he interferometer, was in the design but missing in

7

the requirements. In addition, two event-driven tasks in the design (e.g., commanding the
delay line to a. home position) were missing in the product family requirements. Finally,
two design features (e.g., clearing a counter) were implied but not made explicit as required
capabilit,ies.

The design was also checked to see that it did not preclude any of the thirt,y-five mriabil-
ities. Of these, five were out-of-scope of the delay line component design (e.g. the variability
“The number of delay lines can vary” is handled at a higher level than the delay line com-
ponent, which is instantiated once for each delay line. An additional three of the thirty-five
variabilities were too detailed to check against the top-level design (e.g., calibration require-
rnents) and were deferred to the detailed design.

hlore interesting is that, one varia,bility, dealing with a range of possible va,lues. may be
precluded by an implicit design assumption that t8he rmge is more limited. One other vari-
ability wa,s violated by the design, but investigation revealed that it wa,s the variability t,hat
was in error. The variability described the cross-strapping (configuation) of the delay line
and fringe tracker, but assumed a one-to-one correspondence between them, in accordance
with the available requirement documentation. The design stakes that the delay line re-
ceives targets from one or more fringe tracker components, i.e., a one-to-many relationship,
a correct reflection of the actual requirements [9].

An additional eight issues rehting to t,he design or the preliminary design docurnent,at,ion
were identified during the course of the evaluation of t,he design a,ga,inst the prodl~ct, family
req~~irements. One of these involved a question regarding t,he architlecture of the component,.
Others dealt wit,h inconsistencies in the description, information that, needed to be included
in future versions, and one interface misnomer.

The use of the product family requirements for design evaluation was effective in two
ways. First, tracing the requirements to the design flagged possible omissions in both the
reusable and the individual design. Second, it improved and, t,o some extent,, mlidated the
adequa,cy and accuracy of the current product family requirement,s preparatory to fut,ure,
more extensive development. The design evalua,tion was a two-way street: the design omitted
some features needed to sat,isfy the product fa,mily requirements, and the product family
reyuirement,s omitted some features, such as error handling, addressed in the design.

5. Discussion and Conclusions

5.1 Modeling Decisions
In the course of the specification and analysis of tjhe product family requirements, modeling
decisions with safety implications were made. The discussion that follows describes the al-
ternatives, the trade-offs, the choices that were made, and-with hindsight-the recommended
choices.

0 Near-com~nonalities Near-commonalities, in which the commonality was true for al-
most all the systems in the domain, frequently had to be modeled. As an example,
one near-commonality was “Receives Open Loop Target command [from a. particular
~omput~er]” . However, one interferometer will instead get a,ll its target,s from pre-
programmed sequences. Seven of the nine commonalities challenged by the review

8

were true in all but a single member of the product family. This one interferometer is
planned as a demonstration project of specific technical capabilities. Consequently, it
does not require some features needed by the subsequent scientific missions. The other
t3wo of t,he nine commonalities challenged by the review were also each true for all but
one product family member (a. different one in each case).

These near-commonalities can be represented as variabilities. This choice has the
advantage of more explicitly calling out the variations that have to be addressed when
a project uses the decision model to build a new system. Since unsafe reuse often
involves erroneous assumptions of commonality, classifying the near-commonalities as
variabilities, with notations as to their near-ubiquity, was the approach first ta,ken.

However, an alternative is to introduce a parameter of variability that enumerat’es the
specific interferometers and then represent a near- commonality, call it, NC, that, is true
for all except product fa,mily member i as a, commona,lity of the form “If not, member
i, t,hen NC.” Such statements, or constrained commonalities, are invaria,nts over the
domain.

It is anticipated that how best to model near-commonalities will be a recurring issue in
product family evolution. In a business study of the Sony tape transport (Walkman),
the anthors posit that the competitive advantage is skill in managing the evolution of
the product family [20]. Dike], et, a]., discuss the risk of “architecture det,eriora.tion” a.s
commonalities erode [4]. Much has been written about t,he need to fully anticipate the
expansion of options in an evolving product, family. However, given the frequency with
which projects’ scopes are reduced after development, begins in response to budget or
schedule constraints, unanticipated reduced functionality also occurs.

The product family requirements need to, as much as possible, anticipate and model
the range of possible reductions. Some of these reductions in functionality will turn
commonalities into near-commonalities. Whether represented as variabilities or as
const,rained commonalities, safe reuse manda,tes that exceptions to the assumption of
con~monality be specified. Extensive cross-referencing t,hen allows ready identification
of the nea,r-universality of the requirement, from any point of entry into the requirements
specification.

Dependencies among options
How to model the dependencies among the variabilities is another modeling decision
that had to be a,ddressed in this application. The SPC process mticipates that ea,ch
new project (family member) will he developed by determining an appropriate set
of choices from among the set, of variabilities. An area of concern for safe reuse is
whether dependencies exist among these variabilities m d , if so, how to represent them
and check that they are satisfied for each new family member.

These are constraints on the decision model of the form, “If you choose option A for
variabilit,y V1, then you must choose option B for variability V2.” There were sev-
eral such dependencies to represent for the delay line. For example, one variabi1it)y is
whether or not cross-strapping (reconfiguration) is possible for this particuhr inter-
ferometer. Another variability is whether or not the interferometer tha,t a delay line

is on can shift. However, disallowing cross-strapping compels the value of the second
variability.

There are several ways to model such dependencies among variabilities. The SPC
guidebook suggests as a heuristic that decisions, such as mutually dependent deci-
sions, be grouped and that the logical connections bettween the decision groups then
be defined. Ardis suggests writing such constraints as commonalities, where t,he com-
monality is the required relationship between the parammeters of variation. To illustra,te
this, we use a simple invarimt. (Expert review later revealed the alleged invariant to
be false in some situations, but that inconvenient trut,h will be ignored for a moment).
One variability is that the number of delay lines varies. Another variability is that
the number of fringe trackers varies. A dependency among the variabilities is that the
number of delay lines must equal the number of fringe trackers. This constraint, as
Ardis points out, is in fact a commonality; all interferometers in this product family
must, ha.ve the same number of delay lines and fringe trackers.

In this case, the number of fringe trackers and number of delay lines are parameters of
variat,ion, represented in the SCR variable table as monitored variables. The depen-
dency among variabilities was recorded in the SCR Specification Assertion Dictionary
as an assertion stating that the two parameters of variation are equal.

0 Hierarchy s f variabilities
A modeling question that was investigated was whether the interferometers could be
organized into a hierarchy such that all the interferometers grouped at a single node
share t,he same \ d u e for many parameters of variabilit,y. This question wa,s, for this
application, answered largely in the negative, but more work is needed to answer it, for
larger product families.

A tree was constructed with the top node being a,ll interferometers for which there are
no parameters of variability with a shared value among all interferometers. (If they all
had the same value, we would have an additional commonality.) At the second level of
the tree were two nodes, spaceborne interferometers and groundbased interferometers.
At the third level of the tree, the spacebased interferometers were divided int80 fixed-
axis collectors and formattion-flying collectors, and so on.

This approach was discarded for two reasons. First, there were several possible trees,
with often no compelling reason to select one tree over another. For example, perhaps
the branch at the second level should be into prototypes and non-prototypes, rather
than into spaceborne and groundbased. Both hierarchies are reasonable alternatives.
Counting up the number of parameters of variability with shared values in each of the
alternat,ive trees is possible but not readily scalable, and lacks the intuitive appeal of
an a.greed-upon part,it,ioning.

Second, while fa,mily members at a node did share the same value for some pa,ra.meters
of variability, the hierarchy did not provide additional useful structure or insight i n
this applica,tion. This was largely due to the fact thak the number of variabilities was
managea.ble and that most of the branch points in the hierarchy were already known
to be key boolean variables in the specification (e.g., whether or not the interferometer
had a fixed axis for its baseline).

10

For larger product fa.milies, it ma,y be that a hierarchy of variabilities would be ben-
eficial. In general, being able to group the variabilities, much a,s SPC recommends
grouping decisions in the decision model, would seem to simplify reuse and simplify
the safety analysis of the variabilities. However, in this application, the effort did not
pay off.

e Distinguishing types of variabilities
Two different types of variabilities exist for the interferometer product, family. The
first type, and the most common, describes variations among t,he interferometers’ a,r-
chitecture (e.g., what’ a.ctuators the delay line controls), hardware configuration (e.g.,
whether the baseline is fixed or variable), or choice of algorithm (e.g., for dither cali-
braation). This type of variation is determined at specification time and is constant for
each member of t,he product family.

The second type of mriability describes dynamic variations among the interferometers.
These are variabilities that, for a particular member, can vary over time. An example
is wha.t kind of target, is selected (e.g., diagnostic or feedforward). Another example
is if the filtering algorithm used depends on some property of the data received [22].
These varia,tions involve dependencies of the required behavior on run-time scenarios.

Looking at examples of other product family specifications provided informally to
t,he author, it appears that this distinction is a common issue. The requirements
specification for some members’ behavior is based in part on run-time variations in the
environment.

Ardis and Weiss handle t,his issue by documenting the binding of each pa,rameter of
variability. Each parameter is bound at specification, compile, or run-time in their ap-
proach. This is valuable information for safety analyses since it distinguishes what is
constant for a member from what varies dynamically for that member. However, even
with the binding information, the product family approach still collapses the decision
model and the requirements specification for a particular member into a single struc-
ture. The representation here of both types of parameters of variability as monitored
variables in the SCR specification also fails to adequately distinguish the tjwo types of
varkbility. More work, perhaps along the lines of [23], is needed to better represent
these aspects of the domain specification of product families.

All four of the modeling issues described here have safety implications. Common va.ri-
abilities can be modeled as constrained commonalities (e.g., invariants of the form
“For all interferometers, if the axis is not fixed, then the interferometer has an ex-
ternal metrology component”). Dependencies among variabilities can he modeled as
relationships among variabilities (i.e., assertions) or as commonalities, where the terms
are parameters of variability. Variabilities can be grouped in a hierarchical structure
where the product, family members at a node share the va.lues of certain paramet,ers
of mriability. Those varia,bilities not known until run-time can be distinguished and
analyzed separately. In all these modeling decisions, accurate representation of t8he
limitations on the commonalities (not overstating similarities) provides the strongest
safeguard against the risks of reuse. Ca.pturing dependencies among varkbilities pro-
tects against inconsistent systems and provides a more complete requirements model

11

for further safety analyses.

5.2 Results of Review
Limits t o a s h r e d vocabulary. One of the unexpected aspects of the review was that the
langua,ge in the documents specifying the reusable software was not always familiar to
the developers on a specific project. Some of the product family requirements, written
using the vocabulary of the reusable software project, were found to be ambiguous
during the review, since each project had a, slightly different vocabulary.

The glossary, produced a.s one of the first steps in the process, wa.s some help, but
lacked precision in some ent>ries. The obvious solution was to introduce some degree
of formal specifica.tion [5] , and this was partially done with the SCR* specification.
The unclear words or phrases were also rewritten for reviewers into more precise text.
This was supplemented by the more formal SCR description to serve as a reference for
future queries.

0 Review decreased commonalities. The commonalities and variabilities for the Delay
Line component were reviewed by an engineer with experience on interferometers.
Nine of the twenty-nine delay line commonalities were deleted after review. It turned
out, to be very hard to write unambiguous textual statements that all customers agree
will certainly apply to them. All nine of these deleted commonalities were generally
t,rue, however, and were added as variabilities.

This caused a re-evaluation of whether the targeted subsystems did, in fact, form a
product family. The conclusion was that, based on the SPC definitions a.s well as
management perception, they did form a product family. The sirnilxities among the
insta.ntiations of these subsystems are both widespread and specific, encompassing
requirement,, architectural, and design commonalities.

0 Review increased variabilities Conversely, after review and update, the twenty-three
variabilities increased to thirty-five and four others were modified by additional infor-
mation. The increase in variabilities tended to affirm the value of the review from a
safety perspective, since these additional insights largely involved subtle dist,inctions
among interferometer components, atypical interactions, or occasional modes. Cap-
turing these additional variabilities at the requiremenh stage was the most significant
xlvantage of the review.

5.3 Lessons Learned
The process of domain definition for the chosen interferometer components was fairly straight-
forward, and largely followed the approach outlined in [2 l , 2, 221. However, the effort experi-
enced a of guida,nce for ma,king specific modeling decisions involving near-commonalities
and relationships among variabilities.

In past, this is due to the limited number of examples in the literature. There is an
especial need for more examples that deal with both variable system c,onfigurations and
varia.ble inputs t'o that system. Although the SPC guidebook discourages considering runtime

12

variations in the decision model, it is impossible, as Weiss points out, to describe the required
behavior without modeling those monitored variables. Additional examples that are object-
oriented would also be welcome. Finally, as Miller has pointed out, there is a need for more
product, family engineering to describe how to model the requirements for an entire family
of products [17].

The modeling decisions that have safety implications, such as how to handle near-
commonalities, specifying dependencies among variabilities, and hierarchies of variabilities
within the product family, were the most time-consuming and difficult part of the process.
In general, thorough documentation of the variabilities, even at the cost of minimizing pos-
sible commonalities, was chosen as the safest course of action. Safe reuse depends on the
underlying assumptions of commonality being true.

The integration of the hazards analysis witJh the product family a.pproach contributed
four derived safety requiremerh to the product family reyuirement,s. Incorporation of these
additional safety requirements offers a stmdardized way to mitrigate cert’ain operational
hazards in the delay line component.

The product family requirements were useful in evaluation of both the design of reusable
software components and in the design of a specific delay line. Requirements tracea,bility
from the product family to the family members identified both a, variabilit,y a.nd three com-
mod i t i e s t ha t were not fully traceable t,o the design, as well as errors a.nd omissions i n
the product family specifications. The product family approach supports reuse; experience
applying it to the interferometer components suggests some ways in which it can support
safe reuse.

Acknowledgments
The author thanks Brad E. Hines for help in understanding interferometers, Richard L.
Johnson a,nd John Y. Lai for feedback on this work and for their careful explanations, Frank
J. Humphrey for initial development of an SCR specification, and Mark A. Ardis for timely
suggestions regarding representation of relationships among variations.

The work described in this paper was carried out a,t the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

Reference herein to any specific commercial product, process, or service by tradename,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by
the United St,a,tes Government or the Jet Propulsion Laboratory, California Institute of
Technology.

References
[l] Addy, Edward A., “A Framework for Performing Verification and Validation in Reuse-Based

Software Engineering,” Annals of Software Engineering, Vol. 5, 1998.

[2] Ardis, Mark A. and David M. Weiss, “Defining Families: The Commonality Analysis,”
Tutorial, International Conference on Software Engineering, 1997.

13

[3] Ardis, Mark A. and David Weiss, “Commonality Analysis: Principles and Practice, Intro-
duction and Overview Notebook,” May 19, 1997.

[4] Dikel, David, David Kane, Steve Ornburn, William Loftus, and Jim Wilson, “Applying
Software Product,-Line Architecture,” Computer, August, 1997, pp. 49-55.

[5] Easterbrook, S.. R. Lutz, R. Covington, J . Kelly, Y. Ampo, and D. Hamilton, “Experiences
IJsing Lightweight, Formal Methods for Requirements Modeling,” IEEE Transoction.s on
Software Engineering, Vol. 24, No. 1, January, 1998, pp. 4-14.

[6] Gomaa, Hassan, “Reusable Software Requirements and Architectures for Families of Sys-
tems,” Journal of Systems and Software, Vol. 28, No. 3 , March, 1995, pp. 189-202.

[7] Heitmeyer, C., A. Bull. C. Ga,sa.rch, and B. Labaw (1995), “SCR: A Toolset for Specifying
and Analyzing Requirements,” In Proceedings of the 10th Annu,ul Conference on Computer
,4.ssuronc~, IEEE, Ga,it,hersburg, MD. pp. 109-122.

[8] JPL Interna,l Document,, “QuIC Delay Line Component,” January 28, 1998.

[9] JPL Internal Document, “Delay Line Component,” January 28, 1998.

[lo] JPL Internal Document, “Interferometry Technology Program, Real-Time Control, Software
Architecture Review,” June 19, 1998.

[11] JPL Internal Document, “RICST Software Overview,” November 2, 1997.

[12] JPL Internal Document, “RICST Increment 2 Black Box Specification,” Fehrua.ry 5, 1998.

[13] Lam, W., J. A. McDermid, and A. J. Vickers, “Ten Steps Towards Systematic Requirements
Reuse,” Third IEEE International Symposium on Requirements Engineering, IEEE, Jan. 6-
10, 1997, pp. 6-15.

[14] Lau, Kenneth, M. Colavita, a,nd M. Shao, “The New Millennium Separated Spacecraft,
Interferometer,” Space Technology and Applications International Forum (STAIF-$7), Al-
buquerque, NM, January 30, 1997.

[15] Leveson, N. G . (1995), Safeware: System Safety and Computers, Addison-Wesley, Reading,
MA.

[16] Lutz, Robyn, G . Helmer, M. Moseman, D. Statezni, and S. Tockey, “Safety Analysis of Re-
quirements for a Product Family,” Proceedings of the Third IEEE International Conference
on Requirements Engineering (ICRE ’98), April 6-10, 1998, Colorado Springs, CO.

[17] Miller, S. P. (1998), “Specifying the Mode Logic of a Flight Guidance System in CORE and
SCR,” 2nd Workshop on Formal Methods in Softumre Practice, Clearwater Beach, FL.

[18] “NASA’s Interferometry Program: The Search for Life Beyond the Solar System: Some
Facts and Figures,” June 16, 1997.

[19] Rushby, John, “Critical System Properties: Survey and Taxonomy,” Reliability Engineering
and System Safety, Vol. 43, No. 2, 1994, pp. 189-214.

[20] Smderson, Susan Walsh and Mustafa Uzumeri, The Innovation Imperative: Strategies for
Managing Product Models and Fam,iZies, Chicago: Irwin Professional Publishing, 1997.

14

[21] Softwa,re Productivity Consortium (Nov., 1993), Reuse-Driven Software P.roce.5.se.s Guide-
boob, SPC-S‘LOlS-CMC, V . 02.00.03.

[22] Weiss, D. M. (1997), “Defining Families: The Commonality Analysis,” submitted for pub-
lication.

[23] Zave, Pamela and Michael Jackson, “Four Dark Corners of R.eyuirements Engineering,”
ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 1, Ja.nuary, 1997,
pp. 1-30.

15

	Reuse,ﬂ Third IEEE International Symposium on Requirements Engineering IEEE Jan

